Plain text into data for statistical analysis

The vast wealth of information unlocked by the Internet, most is plain text. The data necessary to answer myriad questions — about, say, the correlations between the industrial use of certain chemicals and incidents of disease, or between patterns of news coverage and voter-poll results — may all be online. But extracting it from plain text and organizing it for quantitative analysis may be prohibitively time consuming.

Information extraction — or automatically classifying data items stored as plain text — is thus a major topic of artificial-intelligence research. Last week, at the Association for Computational Linguistics’ Conference on Empirical Methods on Natural Language Processing, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory won a best-paper award for a new approach to information extraction that turns conventional machine learning on its head.

Most machine-learning systems work by combing through training examples and looking for patterns that correspond to classifications provided by human annotators. For instance, humans might label parts of speech in a set of texts, and the machine-learning system will try to identify patterns that resolve ambiguities — for instance, when “her” is a direct object and when it’s an adjective.

Typically, computer scientists will try to feed their machine-learning systems as much training data as possible. That generally increases the chances that a system will be able to handle difficult problems.

In their new paper, by contrast, the MIT researchers train their system on scanty data — because in the scenario they’re investigating, that’s usually all that’s available. But then they find the limited information an easy problem to solve.

“In information extraction, traditionally, in natural-language processing, you are given an article and you need to do whatever it takes to extract correctly from this article,” says Regina Barzilay, the Delta Electronics Professor of Electrical Engineering and Computer Science and senior author on the new paper. “That’s very different from what you or I would do. When you’re reading an article that you can’t understand, you’re going to go on the web and find one that you can understand.”